1. The maximum value of |z| when z satisfies the condition $|z + \frac{1}{z}| = 4$ is

A) $2 - \sqrt{5}$

B) $2 + \sqrt{5}$

C) $4 - \sqrt{5}$

D) $4 + \sqrt{5}$

2. If $1, \omega_1, \omega_2, \dots \omega_9$ are the 10^{th} roots of unity, then $(1 + \omega_1)(1 + \omega_2) \cdots (1 + \omega_9)$ is

A) 0

C)-1

D) 9

3. If x is a real number, then $(x-1)^2 + (x-2)^2 + \cdots + (x-100)^2$ is least when x is

A) 50

B) 100

C) 101

D) $\frac{101}{2}$

4. The sum $100C_0 + 101C_1 + 102C_2 + \cdots + 150C_{50}$ is

A) $200C_{100}$

B) $201C_{50}$

C) $201C_{100}$

D) $151C_{50}$

5. If $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & -1 \end{pmatrix}$ then A^{101} is

A) I

B) A - I C) A

D) (a + b)(A - I)

6. The value of the determinant $\begin{vmatrix} 1 & \log_5 10 & \log_5 15 \\ \log_{10} 5 & 1 & \log_{10} 15 \\ \log_{15} 5 & \log_{15} 10 & 1 \end{vmatrix}$ is

A) 0

C) $\log_5 150 + \log_{10} 75 + \log_{15} 50$

D) $\log_5 25 + \log_{10} 20 + \log_{15} 15$

7. For what value of λ will the equation $\lambda x^2 - 10xy + 12y^2 + 5x - 16y - 3 = 0$ represent a pair of straight lines

A) 4

B) 2

C) -2

D) 3

8. The equation of a tangent to the circle $x^2 + y^2 - 2x - 6y - 12 = 0$ is

A) $\sqrt{3}(x-2) + (y-3) = 0$

B) $\sqrt{3}(x-2) + (y-3) = 5$

C) $\sqrt{3}(x-2) + (y-3) = 10$

D) $(x-2) + \sqrt{3}(y-3) = 5$

9.	The director circle of the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$ is						
	A) $x^2 + y^2 = 16$ C) $x^2 + y^2 = 7$	10	B) $x^2 + y^2 = 9$ D) $x^2 + y^2 = 25$				
10.	The angle between the planes $2x - y + z = 6$ and $x + y + 2z = 3$ is						
	A) π	B) $\frac{\pi}{2}$	C) $\frac{\pi}{3}$	D) $\frac{\pi}{6}$			
11.	. The equation of the perpendicular bisector of the straight line joining the points $(2,3)$ and $(1,2)$ is						
	A) $x - y + 4 = 0$ C) $x + y - 4 = 0$		B) $x - y - 2 = 0$ D) $x + y - 2 = 0$				
12.	. The spheres $x^2 + y^2 + z^2 = 25$ and $x^2 + y^2 + z^2 - 24x - 40y - 18z + 225 = 0$						
	A) touch internally B) touch externally C) do not touch ea D) intersect each of	y ach other					
13.	$\cos 2x + a\sin x = 2$	2a - 7 possesses a s	olution for				
	A) all a	B) $a > 6$	C) $a < 2$	D) $a \in [2, 6]$			
14.	The lowest degree of the polynomial with real coefficients having roots $2, -3, 2+i, 1+i$ is						
	A) 2	B) 4	C) 6	D) 8			
15.	Let $f(x) = 6x + 5$ then $f_{15}(5)$ is	5. If f_n denotes the	function $f \circ f \circ \cdots$	$\cdot \circ f$ n times			
	A) $6^{15} - 1$	B) $6^{15} + 1$	C) $6^{16} - 1$	D) $5(6^{15} + 1)$			
16.	If $f(x) = 2^x + 2^{x+1}$	$1 + \dots + 2^{x+9}$ then	f'(2) is				

A) $1023\log_e 16$ B) $1023\log_e 8$ C) $1023\log_e 4$ D) $1023\log_e 2$

- 17. If $f(x) = \min\{x, x^2\}$ for every real value of x, then which one of the following is not true
 - A) f is continuous for all x
 - B) f is differentiable for all x
 - C) f'(x) = 1 for all x > 1
 - D) one of the above statement is wrong
- 18. If $\int_0^{\frac{\pi}{2}} \cos^n x dx = A$, then the value of $n \int_{\frac{\pi}{2}}^0 \sin^n x dx$ is
 - A) -A
- B) A
- C) nA
- D) -nA
- 19. If $\int_{0}^{x} f(t) dt = x + \int_{x}^{1} t f(t) dt$ then the value of f(1) is
- B) $-\frac{1}{2}$
- C) 1
- D) -1
- 20. The general solution of the equation $(e^{-x} + \sin y)dx + \cos ydy = 0$ is
 - $A) x + e^{-x} \cos y + C = 0$
 - B) $x e^{-x} \sin y + C = 0$
 - C) $x + e^x \sin y + C = 0$
 - $D) x e^x \sin y + C = 0$
- 21. $\lim_{n \to \infty} \{ \sqrt{n^2 + n} n \}$ is
 - A) 0
- B) 1
- C) $\frac{1}{2}$
- D) ∞

- 22. $\lim_{n \to \infty} (n^{\frac{1}{n}} 1)^n$ is
 - A) 1
- B) 0
- C) e
- D) ∞

- 23. Which of the following series is divergent

B) $\sum_{n=1}^{\infty} \frac{1}{n \log(n+1)}$

A) $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ C) $\sum_{n=1}^{\infty} \frac{\sqrt{n+1} - \sqrt{n}}{n}$

D) $\sum_{n=1}^{\infty} \frac{1}{n^2}$

	the Riemann Stielgies integral $\int_{0}^{2} x^{2} d[x]$ is equal to					
	A) 1	B) 3	C) 5	D) 0		
27.	Let the function f	be defined on \mathbb{R} b	у			
		$f(x) = \begin{cases} 0, & \text{if} \\ x, & \text{O} \end{cases}$	x is rational therwise			
	Let μ be the Lebe	esgue measure on	[0,1], then the Lebe	esgue integral		
	$\int_{0}^{1} f d\mu$ has the value	ie				
	A) 1	B) 0	C) $\frac{1}{2}$	D) 2		
28.	Let $f(x) = \begin{cases} 1, \\ -1, \end{cases}$ Then which of the	if x is rational if x is irrational following function	is Riemann integra	ble on $[0,1]$		
	A) <i>f</i>	B) f	C) f^+	D) f^-		
29.			ower series $\sum_{n=0}^{\infty} a_n z^n$ i	is R , then the		
	radius of converge	nce of the power se	eries $\sum_{n=0}^{\infty} n^2 a_n z^n$ is			
	A) R	B) 2R	C) $\frac{R}{2}$	D) R^2		

24. Which of the following sequence is convergent for all x in [0,1], but is

26. Let [x] denote the greatest integer not exceeding x, then the value of

B) $\{\sin nx\}$ C) $\{x^n(1+x)^{-n}\}$ D) $\{x^n\}$

B) A = 0 and $B = \infty$ D) A = 1 and $B = \infty$

not uniformly convergent on [0, 1]?

25. If $A = \lim_{x \to 0} x \sin \frac{1}{x}$ and $B = \lim_{x \to \infty} x \sin \frac{1}{x}$, then

A) $\{\frac{\sin nx}{\sqrt{n}}\}$

A) A = B = 0

C) A = 0 and B = 1

30.	Which of the following power series	represent the principal branch of
	$\log(1+z)?$	
	A) $z - \frac{z^2}{2} + \frac{z^3}{3} - \cdots$ C) $1 + z + \frac{z^2}{2} + \cdots$	B) $z + \frac{z^2}{2} + \frac{z^3}{3} + \cdots$ D) $1 - z + \frac{z^2}{2} - \cdots$
	2	2

31. Let γ be the path defined by $\gamma(t)=e^{4\pi it},\,0\leq t\leq 1.$ Then the value of the integral $\int\limits_{\gamma}\frac{dz}{z}$ is

	A) $Z7$	(i			D,) 4777	,) 0		D) -27
22	(T)	·	,	• ,	C +1	c		$1-\cos z$		0.	

- 32. The singularity of the function $\frac{1-\cos z}{z^2}$ at z=0 is
 - A) a simple pole

 B) a pole of order 2
 C) a removable singularity
 D) an essential singularity
- 33. Let γ be a positively oriented unit circle, then $\int_{\gamma} \frac{\sin z}{z^2} dz$ has the value
 - A) $2\pi i$ B) 0 C) $-2\pi i$ D) $4\pi i$
- 34. At z = 0, the function $f(z) = \frac{1}{z} + \frac{1}{z^2} + e^{\frac{1}{z}}$ has
 - A) an essential singularity

 B) a simple pole
 C) a pole of order 2

 D) a removable singularity
- 35. The radius of convergence of the power series $\sum_{n=0}^{\infty} \frac{n^2 z^{2n}}{2^n}$ is
 - A) $\frac{1}{\sqrt{2}}$ B) 2 C) $\sqrt{2}$ D) $\frac{1}{2}$

36. Which of the following subsets of the complex plane is simply connected?

$$\begin{array}{l} {\rm A)}\ \{z:|z|>1\} \\ {\rm B)}\ \{z:|z-1|\leq 2\} \cup \{z:|z+1|\leq 2\} \\ {\rm C)}\ \{z:0<|z|<1\} \\ {\rm D)}\ \{z:|z-1|>1\} \end{array}$$

- 37. Let T be the Mobius transformation defined by $T(z) = \frac{z+i}{iz+1}$. Then T maps the real axis $\{z : \text{Im } z=0\}$ onto
 - A) the imaginary axis $\{z : \text{Re } z = 0\}$
 - B) the unit circle $\{z : |z| = 1\}$
 - C) the line $\{z : \text{Re } z = 1\}$
 - D) the circle $\{z: |z-i|=1\}$
- 38. Let $f(z) = \sin \frac{\pi}{z}$, $z \in \mathbb{C}$, $z \neq 0$. Then which of the following statements is incorrect.
 - A) f(z) has infinite number of zeros in \mathbb{C}
 - B) z = 0 is an essential singularity of f
 - C) $\lim_{|z| \to \infty} f(z) = 0$
 - D) f(z) is bounded in the annulus $\{z: 0 < |z| < 1\}$
- 39. The residue at z = 1 of the function $\frac{1}{(z-1)(z-3)^2}$ is
 - A) 2
- B) 0
- C) $\frac{1}{4}$
- D) 4
- 40. The coefficient of $\frac{1}{z}$ in the Laurent series expansion of $f(z) = \frac{1}{z(z-1)}$ in the region $1 < |z| < \infty$ is
 - A) 1
- B) 0
- C) -1
- D) 2
- 41. Which of the following permutations is even
 - A) $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 5 & 1 \end{pmatrix}$ C) $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 4 & 5 & 3 \end{pmatrix}$

- B) $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 3 & 4 & 2 & 1 \end{pmatrix}$ D) $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 2 & 5 & 4 \end{pmatrix}$
- 42. If a + bi with $a, b \in \mathbb{Z}$ is a unit in the ring $\mathbb{Z}[i]$ of Gaussian integers, then which of the following is true
 - A) a = 1
- B) a = -1
- C) b = 1
- D) ab = 0

- 43. Which of the following groups is cyclic
 - A) $\mathbb{Z}_6 \oplus \mathbb{Z}_8$

B) $\mathbb{Z}_3 \oplus \mathbb{Z}_{16}$

C) $\mathbb{Z}_4 \oplus \mathbb{Z}_{12}$

D) $\mathbb{Z}_2 \oplus \mathbb{Z}_{24}$

	44.	44. The order of the element $(2,2)$ in the group $\mathbb{Z}_4 \oplus \mathbb{Z}_6$ is						
		A) 2	B) 4	C) 6	D) 8			
	45.	45. For which of the following numbers all groups of that order are abelia						
		A) 6	B) 8	C) 12	D) 25			
46. Which of the following pair of groups are isomorphic								
		A) \mathbb{Z}_{24} and $\mathbb{Z}_8 \oplus \mathbb{Z}_2$ C) \mathbb{Z}_4 and $\mathbb{Z}_2 \oplus \mathbb{Z}_2$		B) \mathbb{Z}_{25} and $\mathbb{Z}_5 \oplus \mathbb{Z}_5$ D) \mathbb{Z}_{20} and $\mathbb{Z}_2 \oplus \mathbb{Z}_5$				
	47.	Which of the follow	wing maps is a hom	nomorphism on the	ring $\mathbb{Z} \times \mathbb{Z}$			
		A) $\phi(x, y) = (2x, 2x)$ C) $\phi(x, y) = (2x, 3x)$	0 /	B) $\phi(x, y) = (x + y)$ D) $\phi(x, y) = (y, x)$. ,			
	48.	48. Which of the following is a unit in the ring $\mathbb{Z}(\sqrt{2}) = \{a+b\sqrt{2} : a, b \in \mathbb{Z}\}$						
		A) $3 + 2\sqrt{2}$	B) $2 + 3\sqrt{2}$	C) $2 + \sqrt{2}$	D) $1 + 2\sqrt{2}$			
	49. Which of the following equations has a solution in \mathbb{Z}_{18}							
		A) $3x = 5$	B) $4x = 3$	C) $5x = 4$	D) $6x = 7$			
50. Which of the following polynomials is not irreducible					$\mathbb{Z}_3[x]$			
		A) $x^2 + 1$ C) $x^3 + x^2 + 2$		B) $x^2 + x + 2$ D) $x^3 + x + 1$				
51. Which of the following is an ideal in the ring $F[x]$ of all polytover a field F					l polynomials			
		A) set of all polynomials in $F[x]$ of degree> 1 B) set of all polynomials in $F[x]$ of degree ≤ 1 C) set of all polynomials in $F[x]$ without constant term D) set of all polynomials $f(x) \in F[x]$ such that $f(0) \neq 0$						
	52.	The degree of the	field extension $[\mathbb{Q}(\sqrt{n})]$	$\sqrt{2} + \sqrt{3}$, \mathbb{Q}] is				
		A) 1	B) 2	C) 3	D) 4			

54.	Let $K = \mathbb{Q}(\alpha)$ where α is the real cube root of 2, then the order of the automorphism group Aut (K, \mathbb{Q}) is					
	A) 1	B) 2	C) 4	D) 6		
55.	Let σ be an autom following can not be		$(\sqrt{2},\sqrt{3}):\mathbb{Q})$. Then which of the			
	A) $\sigma(\sqrt{2}) = -\sqrt{2}$ C) $\sigma(\sqrt{2} + \sqrt{3}) =$	$\sqrt{2} - \sqrt{3}$	B) $\sigma(\sqrt{2}) = \sqrt{3}$ D) $\sigma(\sqrt{2} + \sqrt{3}) =$	$-\sqrt{2}+\sqrt{3}$		
56.		ce \mathbb{R}^3 over \mathbb{R} , W $x_2 + x_3 = 0$. Then	is the subspace given dim W is	ven by $W =$		
	A) 0	B) 1	C) 2	D) 3		
57.	. Which of the following is a linearly independent set in \mathbb{R}^2					
	A) $\{(1,-1), (-2,2), $)}	B) $\{(1,-1),(3,-1)\}$ D) $\{(3,1),(-3,-1)\}$			
58.	Which of the follow	etor of the matrix A	of the matrix $A = \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}$			
	A) $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$	B) $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$	C) $\begin{bmatrix} 3 \\ 0 \end{bmatrix}$	$D) \begin{bmatrix} 0 \\ 2 \end{bmatrix}$		
59.	. Which of the following matrix is diagonalizable					
	A) $ \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} $	$ B) \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix} $	$C) \begin{bmatrix} 2 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 3 \end{bmatrix}$	$D) \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$		
60.	Let T from \mathbb{R}^2 to rank T is	\mathbb{R}^3 be defined by T	$\Gamma(x,y) = (x+y,x-y)$	+y,0). Then		
	A) 0	B) 1	C) 2	D) 3		

53. Which of the following statement is not true about an algebraically

B) Every polynomial in K[x] of degree n has a factorization into

A) Every non constant polynomial in K[x] has a zero in K

C) Irreducible polynomials in K[x] have degree ≤ 1 D) Every extension of K is an algebraic extension

closed field K

n linear factors in K[x]

- 61. With usual metric in \mathbb{R} which of the following subspaces of \mathbb{R} is complete
 - A) the rationals in \mathbb{R}
 - B) the irrationals in \mathbb{R}
 - C) the closed interval [0, 1]
 - D) the open interval (0,1)
- 62. With usual topology on the spaces concerned which of the following spaces is not connected?
 - $A) \{ z \in \mathbb{C} : |z| < 1 \}$

B) $\{x \in \mathbb{R} : |x| < 1\}$

 $C) \{z \in \mathbb{C} : |z| > 1\}$

- D) $\{x \in \mathbb{R} : |x| > 1\}$
- 63. Which of the following is not a property of \mathbb{R} (with usual topology)
 - A) second countability
- B) compactness

C) separability

- D) local compactness
- 64. Which among the following topologies on \mathbb{R} is an example of a topology not induced by a pseudo metric?
 - A) usual topology

- B) discrete topology
- C) indiscrete topology
- D) cofinite topology
- 65. Which of the following functions $d: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ is not a metric
 - A) d(x, y) = |x y|

- B) d(x, y) = 2|x y|
- C) $d(x,y) = \frac{|x-y|}{1+|x-y|}$
- D) $d(x, y) = |x y|^2$
- 66. Let X be a topological space and let A, B be subsets of X. Then it is not always true that
 - A) $\bar{\bar{A}} = \bar{A}$ C) $\overline{(A \cap B)} = \bar{A} \cap \bar{B}$

B) $\overline{(A \cup B)} = \overline{A} \cup \overline{B}$

- D) $\bar{X} = X$
- 67. With the usual topology, which of the following subspaces of \mathbb{R} is not homeomorphic to (0,1)?
 - A) $\{x | x > 0\}$
- B) [0,1]
- $C) \mathbb{R}$
- D) (-1,1)

- 68. Let X be a metric space. Three of the following properties of X are equivalent to each other, pick the odd one out
 - A) X is compact
 - B) X is sequentially compact
 - C) X has the Bolzano-Weierstrass property
 - D) X is totally bounded
- 69. Let \mathbb{R} be the space of real numbers with usual topology. Which of the following subspaces of \mathbb{R} is compact?
 - A) (0,1)

B) $[0,1] \cup [2,3]$

C) [0,1)

- D) set of all rationals in \mathbb{R}
- 70. Let (X, τ) be the Sierpinski topology with $X = \{a, b\}, \tau = \{\phi, \{a\}, X\}$. Then X is not a
 - A) compact space

B) connected space

C) T_0 space

- D) T_1 space
- 71. Let X be the normed linear space of square summable real sequences with $|| ||_2$ and Y be the subspace generated by the elements $(1,0,0,\ldots)$ and $(0,1,0,\ldots)$. If $U=\{x\in X: ||x||_2<1\}$ Then
 - A) Y + U is open in X
 - B) Y + U is closed in X
 - C) Y + U is neither open nor closed in X
 - D) Y + U is not bounded in X
- 72. Let X be the complex normed linear space of summable sequences of complex numbers with norm $\|\cdot\|_1$ and $Y = \{x \in X : \|x\|_1 \le 1\}$ then
 - A) Y is compact and convex
 - B) Y is compact but not convex
 - C) Y is neither compact nor convex
 - D) Y is convex but not compact
- 73. Let $X = C_{00}$, the space of all real sequences which have only finitely many nonzero members, and f be the linear functional on X defined by $f(x(1), x(2), \ldots) = x(1) + x(2) + \cdots$ for $x = (x(1), x(2), \ldots) \in X$. Then f is continuous
 - A) with respect to $\| \|_1$ and $\| \|_2$ but not with respect to $\| \|_{\infty}$
 - B) with respect to $\| \|_1$ and $\| \|_{\infty}$ but not with respect to $\| \|_2$
 - C) with respect to $\| \|_2$ and $\| \|_{\infty}$ but not with respect to $\| \|_1$
 - D) with respect to $\| \|_1, \| \|_2$ and $\| \|_{\infty}$

- 74. Let $X = C_{00}$ with $\| \|_{\infty}$ and $F : X \to l^{\infty}$ be a bounded linear map. Then there is a bounded linear map $G : C_0 \to l^{\infty}$ such that
 - A) G is unique, $G/C_{00} = F$ and ||F|| < ||G||
 - B) G is unique, $G/C_{00} = F$ and ||F|| = ||G||
 - C) $G/C_{00} = F$ and ||F|| = ||G|| but G is not necessarily unique
 - D) G is unique, R(G) = R(F) and ||F|| < ||G||
- 75. Let X be a normed linear space and Y be a subspace of X with basis $\{y_1, y_2, \ldots, y_n\}$. Let x'_1, x'_2, \ldots, x'_n be linear functionals with

$$x_i'(y_j) = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

If $Z = \{x : x_j'(x) = 0, \text{ for } j = 1, 2, ..., n\}$ then which one of the following is not correct?

A) $Y \cap Z = \{0\}$

B) Y + Z = X

C) Z is open

- D) Z is closed
- 76. If H is the Hilbert space of square summable sequences of complex numbers and if $x=(x(1),x(2),\ldots)\in H$ has the property that $2\sum_{i=1,i\neq j}^{\infty}|x(i)|^2+|x(j)-1|^2+|x(j)+1|^2=18$ then ||x|| is equal to
 - A) 1
- B) 2
- C) $2\sqrt{2}$
- D) 4
- 77. Let H be the complex Hilbert space of square summable sequences of complex numbers and $T: H \to H$ be defined $T(x(1), x(2), \ldots) = (0, x(1), x(2), \ldots)$ for $x = (x(1), x(2), \ldots) \in H$. Then which one of the following is not correct?
 - A) T is bounded

- B) ||T|| = 1
- C) T is one-one but not onto
- D) T is one-one and onto
- 78. Let M be a closed subspace of a complex Hilbert space H. Let P and Q be orthogonal projections of H onto M and M^{\perp} respectively. Then the set of all values of α , β such that $\alpha P + \beta Q$ is selfadjoint is
 - A) ϕ

- B) {1}
- C) the set of all real numbers
- D) set of all complex numbers

- 79. Let H be the real Hilbert space $L^2([0, 2\pi])$ and f be a linear functional on H defined by $f(x) = \int\limits_0^{2\pi} x \sin 2x dx$. Then ||f|| is
 - A) 1
- B) π
- C) 2π
- D) $\sqrt{\pi}$
- 80. Let X_1 and X_2 be closed subspaces of a Hilbert space H and let P_1 and P_2 be orthogonal projections on X_1 and X_2 respectively. If $\langle x, y \rangle = 0$ for all $x \in X_1$, $y \in X_2$ then which one of the following is not correct?
 - A) $X_1 + X_2$ is a closed subspace of H
 - B) $P_1 P_2$ is an orthogonal projection
 - C) $(P_1 P_2)^2$ is an orthogonal projection
 - D) $P_1 + P_2$ is an orthogonal projection

12